Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Risk Anal ; 44(2): 379-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37344376

RESUMEN

In May 2016, the Global Polio Eradication Initiative (GPEI) coordinated the cessation of all use of type 2 oral poliovirus vaccine (OPV2), except for emergency outbreak response. Since then, paralytic polio cases caused by type 2 vaccine-derived polioviruses now exceed 3,000 cases reported by 39 countries. In 2022 (as of April 25, 2023), 20 countries reported detection of cases and nine other countries reported environmental surveillance detection, but no reported cases. Recent development of a genetically modified novel type 2 OPV (nOPV2) may help curb the generation of neurovirulent vaccine-derived strains; its use since 2021 under Emergency Use Listing is limited to outbreak response activities. Prior modeling studies showed that the expected trajectory for global type 2 viruses does not appear headed toward eradication, even with the best possible properties of nOPV2 assuming current outbreak response performance. Continued persistence of type 2 poliovirus transmission exposes the world to the risks of potentially high-consequence events such as the importation of virus into high-transmission areas of India or Bangladesh. Building on prior polio endgame modeling and assuming current national and GPEI outbreak response performance, we show no probability of successfully eradicating type 2 polioviruses in the near term regardless of vaccine choice. We also demonstrate the possible worst-case scenarios could result in rapid expansion of paralytic cases and preclude the goal of permanently ending all cases of poliomyelitis in the foreseeable future. Avoiding such catastrophic scenarios will depend on the development of strategies that raise population immunity to type 2 polioviruses.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Poliovirus/genética , Vacuna Antipolio Oral , Brotes de Enfermedades/prevención & control , Bangladesh/epidemiología , Salud Global
2.
Risk Anal ; 44(2): 366-378, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37344934

RESUMEN

Due to the very low, but nonzero, paralysis risks associated with the use of oral poliovirus vaccine (OPV), eradicating poliomyelitis requires ending all OPV use globally. The Global Polio Eradication Initiative (GPEI) coordinated cessation of Sabin type 2 OPV (OPV2 cessation) in 2016, except for emergency outbreak response. However, as of early 2023, plans for cessation of bivalent OPV (bOPV, containing types 1 and 3 OPV) remain undefined, and OPV2 use for outbreak response continues due to ongoing transmission of type 2 polioviruses and reported type 2 cases. Recent development and use of a genetically stabilized novel type 2 OPV (nOPV2) leads to additional potential vaccine options and increasing complexity in strategies for the polio endgame. Prior applications of integrated global risk, economic, and poliovirus transmission modeling consistent with GPEI strategic plans that preceded OPV2 cessation explored OPV cessation dynamics and the evaluation of options to support globally coordinated risk management efforts. The 2022-2026 GPEI strategic plan highlighted the need for early bOPV cessation planning. We review the published modeling and explore bOPV cessation immunization options as of 2022, assuming that the GPEI partners will not support restart of the use of any OPV type in routine immunization after a globally coordinated cessation of such use. We model the potential consequences of globally coordinating bOPV cessation in 2027, as anticipated in the 2022-2026 GPEI strategic plan. We do not find any options for bOPV cessation likely to succeed without a strategy of bOPV intensification to increase population immunity prior to cessation.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Vacuna Antipolio Oral/uso terapéutico , Serogrupo , Poliomielitis/epidemiología , Vacuna Antipolio de Virus Inactivados , Salud Global , Erradicación de la Enfermedad
3.
Vaccine ; 41(41): 6083-6092, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37652822

RESUMEN

BACKGROUND: To inform response strategies, we examined type 1 humoral and intestinal immunity induced by 1) one fractional inactivated poliovirus vaccine (fIPV) dose given with monovalent oral poliovirus vaccine (mOPV1), and 2) mOPV1 versus bivalent OPV (bOPV). METHODS: We conducted a randomized, controlled, open-label trial in Dhaka, Bangladesh. Healthy infants aged 5 weeks were block randomized to one of four arms: mOPV1 at age 6-10-14 weeks/fIPV at 6 weeks (A); mOPV1 at 6-10-14 weeks/fIPV at 10 weeks (B); mOPV1 at 6-10-14 weeks (C); and bOPV at 6-10-14 weeks (D). Immune response at 10 weeks and cumulative response at 14 weeks was assessed among the modified intention-to-treat population, defined as seroconversion from seronegative (<1:8 titers) to seropositive (≥1:8) or a four-fold titer rise among seropositive participants sustained to age 18 weeks. We examined virus shedding after two doses of mOPV1 with and without fIPV, and after the first mOPV1 or bOPV dose. The trial is registered at ClinicalTrials.gov (NCT03722004). FINDINGS: During 18 December 2018 - 23 November 2019, 1,192 infants were enrolled (arms A:301; B:295; C:298; D:298). Immune responses at 14 weeks did not differ after two mOPV1 doses alone (94% [95% CI: 91-97%]) versus two mOPV1 doses with fIPV at 6 weeks (96% [93-98%]) or 10 weeks (96% [93-98%]). Participants who received mOPV1 and fIPV at 10 weeks had significantly lower shedding (p < 0·001) one- and two-weeks later compared with mOPV1 alone. Response to one mOPV1 dose was significantly higher than one bOPV dose (79% versus 67%; p < 0·001) and shedding two-weeks later was significantly higher after mOPV1 (76% versus 56%; p < 0·001) indicating improved vaccine replication. Ninety-nine adverse events were reported, 29 serious including two deaths; none were attributed to study vaccines. INTERPRETATION: Given with the second mOPV1 dose, fIPV improved intestinal immunity but not humoral immunity. One mOPV1 dose induced higher humoral and intestinal immunity than bOPV. FUNDING: U.S. Centers for Disease Control and Prevention.


Asunto(s)
Inmunidad Mucosa , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Humanos , Lactante , Bangladesh , Poliovirus , Vacuna Antipolio de Virus Inactivados/efectos adversos , Estados Unidos , Poliomielitis/prevención & control
4.
Lancet Infect Dis ; 23(9): 1062-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178706

RESUMEN

BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly. METHODS: We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks' gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510. FINDINGS: Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81-90) participants in the nOPV2 only group and 159 (65%; 58-70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88-95) participants in the nOPV2 plus bOPV group and 229 (93%; 89-96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83-91) participants in the nOPV2 plus bOPV group and 212 (86%; 81-90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination. INTERPRETATION: Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy. FUNDING: The US Centers for Disease Control and Prevention.


Asunto(s)
Poliomielitis , Poliovirus , Lactante , Humanos , Vacuna Antipolio Oral , Poliomielitis/epidemiología , Vacuna Antipolio de Virus Inactivados , Bangladesh/epidemiología , Esquemas de Inmunización , Inmunogenicidad Vacunal , Anticuerpos Antivirales
5.
Vaccine ; 41 Suppl 1: A25-A34, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36863925

RESUMEN

BACKGROUND: Trivalent oral poliovirus vaccine (tOPV) was globally replaced with bivalent oral poliovirus vaccine (bOPV) in April 2016 ("the switch"). Many outbreaks of paralytic poliomyelitis associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) have been reported since this time. The Global Polio Eradication Initiative (GPEI) developed standard operating procedures (SOPs) to guide countries experiencing cVDPV2 outbreaks to implement timely and effective outbreak response (OBR). To assess the possible role of compliance with SOPs in successfully stopping cVDPV2 outbreaks, we analyzed data on critical timelines in the OBR process. METHODS: Data were collected on all cVDPV2 outbreaks detected for the period April 1, 2016 and December 31, 2020 and all outbreak responses to those outbreaks between April 1, 2016 and December 31, 2021. We conducted secondary data analysis using the GPEI Polio Information System database, records from the U.S. Centers for Disease Control and Prevention Polio Laboratory, and meeting minutes of the monovalent OPV2 (mOPV2) Advisory Group. Date of notification of circulating virus was defined as Day 0 for this analysis. Extracted process variables were compared with indicators in the GPEI SOP version 3.1. RESULTS: One hundred and eleven cVDPV2 outbreaks resulting from 67 distinct cVDPV2 emergences were reported during April 1, 2016-December 31, 2020, affecting 34 countries across four World Health Organization Regions. Out of 65 OBRs with the first large-scale campaign (R1) conducted after Day 0, only 12 (18.5%) R1s were conducted by the target of 28 days after Day 0. Of the 89 OBRs with the second large-scale campaign (R2) conducted after Day 0, 30 (33.7%) R2s were conducted by the target of 56 days after Day 0. Twenty-three (31.9%) of the 72 outbreaks with isolates dated after Day 0 were stopped within the 120-day target. CONCLUSION: Since "the switch", delays in OBR implementation were evident in many countries, which may be related to the persistence of cVDPV2 outbreaks >120 days. To achieve timely and effective response, countries should follow GPEI OBR guidelines.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Vacuna Antipolio Oral/efectos adversos , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados , Brotes de Enfermedades/prevención & control , Salud Global , Erradicación de la Enfermedad
6.
Vaccine ; 41 Suppl 1: A142-A152, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36402659

RESUMEN

Despite exhaustive and fully-financed plans to manage the risks of globally coordinated cessation of oral poliovirus vaccine (OPV) containing type 2 (OPV2) prior to 2016, as of 2022, extensive, continued transmission of circulating vaccine-derived polioviruses (cVDPVs) type 2 (cVDPV2) remains. Notably, cumulative cases caused by cVDPV2 since 2016 now exceed 2,500. Earlier analyses explored the implications of using different vaccine formulations to respond to cVDPV2 outbreaks and demonstrated how different properties of novel OPV2 (nOPV2) might affect its performance compared to Sabin monovalent OPV2 (mOPV2). These prior analyses used fixed assumptions for how outbreak response would occur, but outbreak response implementation can change. We update an existing global poliovirus transmission model to explore different options for responding with different vaccines and assumptions about scope, delays, immunization intensity, target age groups, and number of rounds. Our findings suggest that in order to successfully stop all cVDPV2 transmission globally, countries and the Global Polio Eradication Initiative need to address the deficiencies in emergency outbreak response policy and implementation. The polio program must urgently act to substantially reduce response time, target larger populations - particularly in high transmission areas - and achieve high coverage with improved access to under-vaccinated subpopulations. Given the limited supplies of nOPV2 at the present, using mOPV2 intensively immediately, followed by nOPV2 intensively if needed and when sufficient quantities become available, substantially increases the probability of ending cVDPV2 transmission globally.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Vacuna Antipolio Oral , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Brotes de Enfermedades/prevención & control , Vacunación/efectos adversos
7.
Vaccine ; 41 Suppl 1: A70-A78, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35282924

RESUMEN

Following the global declaration of indigenous wild poliovirus type 2 eradication in 2015, the world switched to oral polio vaccine (OPV) that removed the type 2 component. This 'switch' included the widespread introduction of inactivated poliovirus vaccine and the creation of a stockpile of monovalent type 2 OPV (mOPV2) to respond to potential polio virus Type 2 (PV2) outbreaks and events. With subsequent detection of outbreaks of circulating vaccine-derived poliovirus type 2 (cVDPV2), it was necessary to use this stockpile for outbreak response. Not only were more outbreaks detected than anticipated in the first few years after the switch, but the number of supplemental immunization activities (SIAs) used to stop transmission was often high, and in many cases did not stop wider transmission. Use of mOPV type 2 led in some locations to the emergence of new outbreaks that required further use of the vaccine from the stockpile. In the following years, stockpile management became a critical element of the cVDPV2 outbreak response strategy and continued to evolve to include trivalent OPV and genetically stabilized 'novel OPV type 2' vaccines in the stockpile. An overview of this process and its evolution is presented to highlight several of these management challenges. The unpredictable vaccine demand, fixed production and procurement timelines, resource requirements, and multiple vaccine types contributes to the complexity of assuring appropriate vaccine availability for this critical programmatic need to stop outbreaks.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Vacuna Antipolio Oral , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Brotes de Enfermedades/prevención & control , Vacuna Antipolio de Virus Inactivados , Salud Global
8.
Vaccine ; 41 Suppl 1: A12-A18, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33962838

RESUMEN

In early 2020, the COVID-19 pandemic led to substantial disruptions in global activities. The disruptions also included intentional and unintentional reductions in health services, including immunization campaigns against the transmission of wild poliovirus (WPV) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2). Building on a recently updated global poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model, we explored the implications of immunization disruption and restrictions of human interactions (i.e., population mixing) on the expected incidence of polio and on the resulting challenges faced by the Global Polio Eradication Initiative (GPEI). We demonstrate that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on January 1, 2021 of all polio immunization activities to pre-COVID-19 levels, the GPEI could largely mitigate the impact of COVID-19 to the delays incurred. The relative importance of reduced mixing (leading to potentially decreased incidence) and reduced immunization (leading to potentially increased expected incidence) depends on the timing of the effects. Following resumption of immunization activities, the GPEI will likely face similar barriers to eradication of WPV and elimination of cVDPV2 as before COVID-19. The disruptions from the COVID-19 pandemic may further delay polio eradication due to indirect effects on vaccine and financial resources.


Asunto(s)
COVID-19 , Poliomielitis , Poliovirus , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Vacuna Antipolio Oral , Brotes de Enfermedades/prevención & control , Salud Global , Erradicación de la Enfermedad
9.
Vaccine ; 41 Suppl 1: A136-A141, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33994237

RESUMEN

The Global Polio Eradication Initiative (GPEI) faces substantial challenges with managing outbreaks of serotype 2 circulating vaccine-derived polioviruses (cVDPV2s) in 2021. A full five years after the globally coordinated removal of serotype 2 oral poliovirus vaccine (OPV2) from trivalent oral poliovirus vaccine (tOPV) for use in national immunization programs, cVDPV2s did not die out. Since OPV2 cessation, responses to outbreaks caused by cVDPV2s mainly used serotype 2 monovalent OPV (mOPV2) from a stockpile. A novel vaccine developed from a genetically stabilized OPV2 strain (nOPV2) promises to potentially facilitate outbreak response with lower prospective risks, although its availability and properties in the field remain uncertain. Using an established global poliovirus transmission model and building on a related analysis that characterized the impacts of disruptions in GPEI activities caused by the COVID-19 pandemic, we explore the implications of trade-offs associated with delaying outbreak response to avoid using mOPV2 by waiting for nOPV2 availability (or equivalently, delayed responses waiting for national validation of meeting the criteria for nOPV2 initial use). Consistent with prior modeling, responding as quickly as possible with available mOPV2 promises to reduce the expected burden of disease in the outbreak population and to reduce the chances for the outbreak virus to spread to other areas. Delaying cVDPV2 outbreak response (e.g., modeled as no response January-June 2021) to wait for nOPV2 can considerably increase the total expected cases (e.g., by as many as 1,300 cVDPV2 cases in the African region during 2021-2023) and increases the likelihood of triggering the need to restart widescale preventive use of an OPV2-containing vaccine in national immunization programs that use OPV. Countries should respond to any cVDPV2 outbreaks quickly with rounds that achieve high coverage using any available OPV2, and plan to use nOPV2, if needed, once it becomes widely available based on evidence that it is as effective but safer in populations than mOPV2.


Asunto(s)
COVID-19 , Poliomielitis , Poliovirus , Humanos , Vacuna Antipolio Oral , Serogrupo , Pandemias , Estudios Prospectivos , COVID-19/epidemiología , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Brotes de Enfermedades/prevención & control , Salud Global
11.
Vaccine ; 39(40): 5814-5821, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34481702

RESUMEN

BACKGROUND: After global oral poliovirus vaccine (OPV) cessation, the Strategic Advisory Group of Experts on Immunization (SAGE) currently recommends a two-dose schedule of inactivated poliovirus vaccine (IPV) beginning ≥14-weeks of age to achieve at least 90% immune response. We aimed to compare the immunogenicity of three different two-dose IPV schedules started before or at 14-weeks of age. METHODS: We conducted a randomized, controlled, open-label, inequality trial at two sites in Dhaka, Bangladesh. Healthy infants at 6-weeks of age were randomized into one of five arms to receive two-dose IPV schedules at different ages with and without OPV. The three IPV-only arms are presented: Arm C received IPV at 14-weeks and 9-months; Arm D received IPV at 6-weeks and 9-months; and Arm E received IPV at 6 and 14-weeks. The primary outcome was immune response defined as seroconversion from seronegative (<1:8) to seropositive (≥1:8) after vaccination, or a four-fold rise in antibody titers and median reciprocal antibody titers to all three poliovirus types measured at 10-months of age. FINDINGS: Of the 987 children randomized to Arms C, D, and E, 936 were included in the intention-to-treat analysis. At 10-months, participants in Arm C (IPV at 14-weeks and 9-months) had ≥99% cumulative immune response to all three poliovirus types which was significantly higher than the 77-81% observed in Arm E (IPV at 6 and 14-weeks). Participants in Arm D (IPV at 6-weeks and 9-months) had cumulative immune responses of 98-99% which was significantly higher than that of Arm E (p value < 0.0001) but not different from Arm C. INTERPRETATION: Results support current SAGE recommendations for IPV following OPV cessation and provide evidence that the schedule of two full IPV doses could begin as early as 6-weeks.


Asunto(s)
Poliomielitis , Vacuna Antipolio Oral , Anticuerpos Antivirales , Bangladesh , Niño , Humanos , Lactante , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados
12.
Open Forum Infect Dis ; 8(7): ofab264, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34295942

RESUMEN

BACKGROUND: The Global Polio Eradication Initiative (GPEI) Strategic Plan for 2019-2023 includes commitments to monitor the quality of immunization campaigns using lot quality assurance sampling surveys (LQAS) and to support poliovirus surveillance in Pakistan and Afghanistan. METHODS: We analyzed LQAS and poliovirus surveillance data between 2016 and 2020, which included both acute flaccid paralysis (AFP) case-based detection and the continued expansion of environmental surveillance (ES). Using updated estimates for unit costs, we explore the costs of different options for future poliovirus monitoring and surveillance for Pakistan and Afghanistan. RESULTS: The relative value of the information provided by campaign quality monitoring and surveillance remains uncertain and depends on the design, implementation, and performance of the systems. Prospective immunization campaign quality monitoring (through LQAS) and poliovirus surveillance will require tens of millions of dollars each year for the foreseeable future for Pakistan and Afghanistan. CONCLUSIONS: LQAS campaign monitoring as currently implemented in Pakistan and Afghanistan provides limited and potentially misleading information about immunization quality. AFP surveillance in Pakistan and Afghanistan provides the most reliable evidence of transmission, whereas ES provides valuable supplementary information about the extent of transmission in the catchment areas represented at the time of sample collection.

13.
J Infect Dis ; 224(9): 1529-1538, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33885734

RESUMEN

BACKGROUND: Pakistan and Afghanistan remain the only reservoirs of wild poliovirus transmission. Prior modeling suggested that before the coronavirus disease 2019 (COVID-19) pandemic, plans to stop the transmission of serotype 1 wild poliovirus (WPV1) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2) did not appear on track to succeed. METHODS: We updated an existing poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model for Pakistan and Afghanistan to characterize the impacts of immunization disruptions and restrictions on human interactions (ie, population mixing) due to the COVID-19 pandemic. We also consider different options for responding to outbreaks and for preventive supplementary immunization activities (SIAs). RESULTS: The modeling suggests that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on 1 January 2021 of all polio immunization activities to pre-COVID-19 levels, Pakistan and Afghanistan would remain off-track for stopping all transmission through 2023 without improvements in quality. CONCLUSIONS: Using trivalent OPV (tOPV) for SIAs instead of serotype 2 monovalent OPV offers substantial benefits for ending the transmission of both WPV1 and cVDPV2, because tOPV increases population immunity for both serotypes 1 and 2 while requiring fewer SIA rounds, when effectively delivered in transmission areas.


Asunto(s)
COVID-19 , Brotes de Enfermedades/prevención & control , Poliomielitis/transmisión , Vacuna Antipolio Oral , Poliovirus , Afganistán/epidemiología , Erradicación de la Enfermedad , Humanos , Pakistán/epidemiología , Pandemias , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Poliovirus/inmunología , SARS-CoV-2
14.
Risk Anal ; 41(2): 248-265, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31960533

RESUMEN

Nearly 20 years after the year 2000 target for global wild poliovirus (WPV) eradication, live polioviruses continue to circulate with all three serotypes posing challenges for the polio endgame. We updated a global differential equation-based poliovirus transmission and stochastic risk model to include programmatic and epidemiological experience through January 2020. We used the model to explore the likely dynamics of poliovirus transmission for 2019-2023, which coincides with a new Global Polio Eradication Initiative Strategic Plan. The model stratifies the global population into 72 blocks, each containing 10 subpopulations of approximately 10.7 million people. Exported viruses go into subpopulations within the same block and within groups of blocks that represent large preferentially mixing geographical areas (e.g., continents). We assign representative World Bank income levels to the blocks along with polio immunization and transmission assumptions, which capture some of the heterogeneity across countries while still focusing on global poliovirus transmission dynamics. We also updated estimates of reintroduction risks using available evidence. The updated model characterizes transmission dynamics and resulting polio cases consistent with the evidence through 2019. Based on recent epidemiological experience and prospective immunization assumptions for the 2019-2023 Strategic Plan, the updated model does not show successful eradication of serotype 1 WPV by 2023 or successful cessation of oral poliovirus vaccine serotype 2-related viruses.


Asunto(s)
Poliomielitis/prevención & control , Poliomielitis/transmisión , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Poliovirus/inmunología , Medición de Riesgo/métodos , Erradicación de la Enfermedad , Brotes de Enfermedades/prevención & control , Salud Global , Humanos , Gestión de Riesgos , Vacunación
15.
Risk Anal ; 41(2): 289-302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32348621

RESUMEN

Beginning in 2013, multiple local government areas (LGAs) in Borno and Yobe in northeast Nigeria and other parts of the Lake Chad basin experienced a violent insurgency that resulted in substantial numbers of isolated and displaced people. Northeast Nigeria represents the last known reservoir country of wild poliovirus (WPV) transmission in Africa, with detection of paralytic cases caused by serotype 1 WPV in 2016 in Borno and serotype 3 WPV in late 2012. Parts of Borno and Yobe are also problematic areas for transmission of serotype 2 circulating vaccine-derived polioviruses, and they continue to face challenges associated with conflict and inadequate health services in security-compromised areas that limit both immunization and surveillance activities. We model poliovirus transmission of all three serotypes for Borno and Yobe using a deterministic differential equation-based model that includes four subpopulations to account for limitations in access to immunization services and dynamic restrictions in population mixing. We find that accessibility issues and insufficient immunization allow for prolonged poliovirus transmission and potential undetected paralytic cases, although as of the end of 2019, including responsive program activities in the modeling suggest die out of indigenous serotypes 1 and 3 WPVs prior to 2020. Specifically, recent and current efforts to access isolated populations and provide oral poliovirus vaccine continue to reduce the risks of sustained and undetected transmission, although some uncertainty remains. Continued improvement in immunization and surveillance in the isolated subpopulations should minimize these risks. Stochastic modeling can build on this analysis to characterize the implications for undetected transmission and confidence about no circulation.


Asunto(s)
Poliomielitis/transmisión , Poliomielitis/virología , Poliovirus , Medición de Riesgo/métodos , Niño , Preescolar , Brotes de Enfermedades/prevención & control , Humanos , Programas de Inmunización , Lactante , Nigeria/epidemiología , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Vacunas contra Poliovirus , Vacunación
17.
Risk Anal ; 41(2): 320-328, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32632925

RESUMEN

After the globally coordinated cessation of any serotype of oral poliovirus vaccine (OPV), some risks remain from undetected, existing homotypic OPV-related transmission and/or restarting transmission due to several possible reintroduction risks. The Global Polio Eradication Initiative (GPEI) coordinated global cessation of serotype 2-containing OPV (OPV2) in 2016. Following OPV2 cessation, the GPEI and countries implemented activities to withdraw all the remaining trivalent OPV, which contains all three poliovirus serotypes (i.e., 1, 2, and 3), from the supply chain and replace it with bivalent OPV (containing only serotypes 1 and 3). However, as of early 2020, monovalent OPV2 use for outbreak response continues in many countries. In addition, outbreaks observed in 2019 demonstrated evidence of different types of risks than previously modeled. We briefly review the 2019 epidemiological experience with serotype 2 live poliovirus outbreaks and propose a new risk for unexpected OPV introduction for inclusion in global modeling of OPV cessation. Using an updated model of global poliovirus transmission and OPV evolution with and without consideration of this new risk, we explore the implications of the current global situation with respect to the likely need to restart preventive use of OPV2 in OPV-using countries. Simulation results without this new risk suggest OPV2 restart will likely need to occur (81% of 100 iterations) to manage the polio endgame based on the GPEI performance to date with existing vaccine tools, and with the new risk of unexpected OPV introduction the expected OPV2 restart probability increases to 89%. Contingency planning requires new OPV2 bulk production, including genetically stabilized OPV2 strains.


Asunto(s)
Poliomielitis/inmunología , Poliomielitis/prevención & control , Vacuna Antipolio Oral , Poliovirus , Simulación por Computador , Erradicación de la Enfermedad/métodos , Brotes de Enfermedades/prevención & control , Salud Global , Conductas Relacionadas con la Salud , Humanos , Vacuna Antipolio de Virus Inactivados , Probabilidad , Riesgo , Gestión de Riesgos , Serogrupo , Vacunación/métodos
18.
Risk Anal ; 41(2): 329-348, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33174263

RESUMEN

Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively.


Asunto(s)
Erradicación de la Enfermedad/métodos , Brotes de Enfermedades/prevención & control , Poliomielitis/prevención & control , Vacuna Antipolio Oral , Poliovirus/inmunología , Medición de Riesgo/métodos , Salud Global , Humanos , Modelos Teóricos , Poliomielitis/epidemiología , Probabilidad , Riesgo , Gestión de Riesgos , Serogrupo , Vacunación
19.
MMWR Morb Mortal Wkly Rep ; 69(37): 1330-1333, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32941411

RESUMEN

Since 1988, when World Health Organization (WHO) Member States and partners launched the Global Polio Eradication Initiative, the number of wild poliovirus (WPV) cases has declined from 350,000 in 125 countries to 176 in only two countries in 2019 (1). The Global Commission for the Certification of Poliomyelitis Eradication (GCC) declared two of the three WPV types, type 2 (WPV2) and type 3 (WPV3), eradicated globally in 2015 and 2019, respectively (1). Wild poliovirus type 1 (WPV1) remains endemic in Afghanistan and Pakistan (1). Containment under strict biorisk management measures is vital to prevent reintroduction of eradicated polioviruses into communities from poliovirus facilities. In 2015, Member States committed to contain type 2 polioviruses (PV2) in poliovirus-essential facilities (PEFs) certified in accordance with a global standard (2). Member states agreed to report national PV2 inventories annually, destroy unneeded PV2 materials, and, if retaining PV2 materials, establish national authorities for containment (NACs) and a PEF auditing process. Since declaration of WPV3 eradication in October 2019, these activities are also required with WPV3 materials. Despite challenges faced during 2019-2020, including the coronavirus disease 2019 (COVID-19) pandemic, the global poliovirus containment program continues to work toward important milestones. To maintain progress, all WHO Member States are urged to adhere to the agreed containment resolutions, including officially establishing legally empowered NACs and submission of PEF Certificates of Participation.


Asunto(s)
Erradicación de la Enfermedad , Salud Global/estadística & datos numéricos , Poliomielitis/prevención & control , Humanos , Poliomielitis/epidemiología , Vacuna Antipolio Oral/administración & dosificación
20.
Vaccine ; 38(14): 3042-3049, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32089462

RESUMEN

The use of the oral poliovirus vaccine (OPV) in developing countries has reduced the incidence of poliomyelitis by >99% since 1988 and is the primary tool for global polio eradication. Spontaneous reversions of the vaccine virus to a neurovirulent form can impede this effort. In persons with primary B-cell immunodeficiencies, exposure to OPV can result in chronic infection, mutation, and excretion of immunodeficiency-associated vaccine-derived polioviruses, (iVDPVs). These iVDPVs may have the potential for transmission in a susceptible population and cause paralysis. The extent to which sera from OPV recipients are able to neutralize iVDPVs with varying degrees of antigenic site substitutions is investigated here. We tested sera from a population immunized with a combination vaccine schedule (both OPV and inactivated polio vaccine) against a panel of iVDPVs and found that increases in amino acid substitution in the P1 capsid protein resulted in a decrease in the neutralizing capacity of the sera. This study underscores the importance of maintaining high vaccine coverage in areas of OPV use as well as active surveillance of those known to be immunocompromised.


Asunto(s)
Proteínas de la Cápside/genética , Síndromes de Inmunodeficiencia , Poliomielitis , Vacuna Antipolio Oral , Poliovirus , Sustitución de Aminoácidos , Anticuerpos Antineoplásicos/inmunología , Anticuerpos Antivirales/inmunología , Salud Global , Humanos , Poliomielitis/prevención & control , Poliovirus/genética , Poliovirus/inmunología , Vacuna Antipolio de Virus Inactivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...